## Plethysmography Test Performance Raw and Lung Volumes A Review

#### Susan Blonshine, RRT, RPFT, AE-C, FAARC

#### Lung Volume by Plethysmography Clinical Indications

- The measurement of TLC to distinguish between restrictive and obstructive processes.
- The evaluation of the pathophysiology of obstructive lung diseases that may produce artifactual results when measured by dilution methods.
- Measurements requiring repeated trials.

#### **Airway Resistance Clinical Indications**

- Bronchodilator response
- Bronchial provocation testing
- Pre- and post- surgical intervention for UAO

### Plethysmography Terminology

- Thoracic Gas Volume (TGV) also known as
  V<sub>pant</sub>
  - A non-specific term. Volume of air in thorax at time shutter closure.
    - Measured during lung volume measurements to obtain FRC<sub>pleth</sub>
    - Measured at the end of airway resistance measurements to correct the resistance measurement to the lung volume at which it was measured

#### **Plethysmography Terminology**

- Functional Residual Capacity (FRC<sub>pleth</sub>)
  - Volume of air contained within the thoracic cage measured by plethysmography and corrected to the average end-expiratory lung volume that preceded the shutter closure that measured TGV

#### Airway resistance and lung volume

#### ► sR<sub>aw</sub>

- $sR_{aw} = R_{aw} X V_{pant}$
- Inverse, linear relationship to lung volume
- sG<sub>aw</sub> (G<sub>aw</sub> relative to measured lung volume)
  - $sG_{aw} = 1/sR_{aw}$  or  $1/(R_{aw} X V_{pant})$
  - sG<sub>aw</sub> is not volume-dependent; can be used to assess change in airway resistance even if lung volume changes.

## TGV (V<sub>pant</sub>)



Shutter closure at endexpiration Shutter closure during panting

#### **Plethysmography Measurements**

> Lung volumes requires stable resting EELV

- Shutter closed after stable EELV established, then:
  - FRC to RV to TLC (preferred) or
  - FRC to TLC to RV
- Rapid panting of Raw raises EELV
  - Shutter closed at end of collection to measure TGV for correcting Raw to sGaw

#### **Considerations Prior to Testing**

- Calibration
- Quality Aspects
  - Test Performance
    - Instrument
    - Patient
  - Test Review
  - Error Recognition
  - Troubleshooting
  - Data Reduction

#### Calibration

- Environmental parameters MUST be checked for accuracy including barometric pressure, temperature, and box volume.
- Devices to calibrate daily:
  - Flow Sensor
  - Mouth pressure Transducer
  - Box pressure Transducer
  - Box leak test (time constant)

#### Cheek support



- Changes in mouth pressure and box pressure are the primary signals in closed shutter maneuver
- During expiratory phase, the cheeks can bow outwards if not supported
  - Mouth pressure signal diminished
  - Can produce unusable TGV loops
- ATS says 'support with fingertips' but flat of palm works better



#### Mouthpiece

- Whenever possible, dentures remain
- Rigid round or oval filter mouthpiece works for some, not all patients
- Flanged mouthpiece helps maintain air-tight seal during closed shutter maneuver

#### **Pre-test**

- Smoking, eating and physical activity
  Avoid for 1 hour
- Discontinue IV\*
- Discontinue supplemental oxygen\*
- Withhold bronchodilators\*

#### **Pre-test**

- Open-door phase
- Closed door phase
- Performance criteria
- Coaching/reassurance
- Performance assessment
- Data selection/reporting

#### Patient Management Reassurance

- Reassure the patient to relieve anxiety associated with the test or sitting within the cabinet
- The test will take 3-4 minutes
- The door can be released at any time from the inside (manufacturer-specific)

#### Patient Management Explanation

- Open-door phase
  - Thoroughly explain the procedure
    - Open shutter-"like a small piston"
    - Closed shutter- brief, gentle efforts
      - · 'try panting with your hand over your mouth'
    - Cheeks must be supported by hands
  - Demonstrate the maneuver
  - Practice with the patient
  - Emphasize relaxing and breathing normally between measurements
- Door Closed Phase
  - Practice while waiting for thermal stability
    - 30-45s minimum

#### Patient Management Closed Shutter Explanation

- Patient performance criteria
  - Emphasize consistent, brief, gentle efforts between 0.5-1.0 efforts/sec (30 to 60/minute)
  - Relax between efforts
    - 'pull' pause 'push' pause 'pull' pause 'push'
    - 'in' pause 'out' pause 'in' pause 'out'
  - Emphasize this is NOT an MVV or MIP/MEP
  - Provide continuous feedback on performance

#### Patient Management Coaching

- Provide Real time feedback
- Practice Maneuver Prior Door Closure
- Practice Maneuver After Door Closure
- Evaluate and Correct during Testing

#### Test Procedure Preparation

- Instrument warmed up, then calibrated
- LEAVE THE DENTURES IN! (unless they interfere)
- Seat in box proceed to open door phase
  - Get patient to relax talk to them
  - Explain procedure; practice pant with hand over mouth
  - Adjust mouthpiece height, shouldn't be too low or high
  - Practice mouthpiece and nose clip placement
  - Practice cheek support
  - Close door wait for thermal equilibration (30-60s)

#### 3 Phases of Lung Volume by Plethysmography Measurement

1. Establish FRC - resting tidal breathing, establish stable baseline (EELV) for 3-10 Breaths.

2. Measure TGV - close shutter at end-expiratory lung volume; brief, gentle pant efforts for 2-3 s

 Measure VC - open Shutter, exhale to RV then inhale to TLC or inhale to TLC and exhale to RV (minimal effort).



#### Metronome vs. Coaching Cadence during closed shutter

- Shutter typically closed for 2-3s
- Any coaching of cadence (including metronome) before shutter will typically increase respiratory rate
- Increasing respiratory rate when obstruction is present will increase EELV
- Control cadence only <u>after</u> shutter closes

#### After first lung volume measurement...

- Often good to allow patient to remove noseclips and come off mouthpiece to rest
  - Opening door can reduce stress, allow nasal O<sub>2</sub>
- Talk to/assess patient
- Review results
  - Look at stability of EELV prior to shutter
    - Assess line of best fit of 3-5 breaths; adjust if needed
  - Examine TGV loop

too small, too large, unidirectional, slope correct?

Reinstruct and resume – goal is 3-5 repeatable, linked

#### Lung Volume by Plethysmography Common Errors

- Starting the measurement before thermal equilibration achieved
- No stable resting end-expiratory lung volume (EELV) during tidal breathing
- Pant effort unidirectional
- Pant frequency too fast
- Pant frequency too slow
- Pant effort too large
- Pant effort too small
- Glottis closing during effort
- Improper vital capacity maneuver after shutter opens
- Unlinked lung volumes
  - One shutter closure for both lung volumes and airway resistance

# Starting the measurement before thermal equilibration achieved

Typically 30-120s after door sealed



#### Wide loops caused by starting measurement too soon same loop can result from panting too slowly



#### **Common Lung Volume Errors**

unstable resting EELV during tidal breathing

- Causes:
  - Anxiety
  - Dyspnea
  - Confusion
- Correction
  - Relaxed tone of voice
  - Guided imagery
  - Minimize time
  - Thorough explanation
  - Good coaching

# **Common Lung Volume Errors**

#### Pant effort unidirectional

- Causes:
  - Poor understanding
  - Expectation of airflow
  - Loss of attention to coaching
- Correction
  - Thorough explanation
  - Practice
  - Good coaching

#### Common Lung Volume Errors Pant frequency too fast

- The assumption that mouth pressure = alveolar pressure no longer valid at pant frequencies above 90/minute.
- Mouth pressure will underestimate alveolar pressure resulting in an overestimation of FRC<sub>pleth</sub>.
  - Causes:
    - Improper coaching
    - Anxiety
    - Dyspnea
    - Confusion
    - Airway resistance measurement
  - Correction
    - Relaxed tone of voice
    - Thorough explanation
    - Practice hand over mouth with coaching of cadence

#### Pant frequency too fast 0.5L increase in EELV before shutter



08:47:20

# **Common Lung Volume Errors**

Pant frequency too slow

Thermal drift causes wider TGV loops making slope assignment more difficult

Causes:

- Failure to follow cadence
  - too slow (< 30/minute)</li>
- Confusion
- Correction
  - Relaxed tone of voice
  - Thorough explanation
  - Practice with coaching of cadence

#### Wide loops caused by panting too slowly

same loop can result from starting measurement too soon



**Common Lung Volume Errors** Pant effort too small (<5cmH20 or 0.5kPa) Difficult to assign TGV slope.

- Causes:
  - Confusion
  - Anxiety
  - Weakness
- Correction
  - Coaching at time of testing
  - Between–effort discussion

Common Lung Volume Errors Pant effort too large (>20cmH2O or 2kPa) Difficult to assign TGV slope.

- Causes:
  - Confusion/poor understanding
  - Anxiety
- Correction
  - Coaching at time of testing
  - Between–effort discussion

#### Pant effort too large



## Same patient after reinstructing



# **Common Lung Volume Errors**

Improper Vital Capacity Maneuver

- Examples:
  - Unlinked to baseline and shutter maneuvers
  - Forcing the exhalation
  - Poor ERV maneuver (too short)
  - Poor IC maneuver (no plateau)
- Correction
  - Instruct and Coach
  - Demonstrate
# **'Linked' Lung Volumes**

- Lung volume measurement 3 phases
  - Stable EELV established
  - Lung volume at or near EELV measured
  - Vital capacity measured
    - ERV to TLC (ATS preferred) or IC to RV
- 'Linked' means 3 phase are tied to each other
  - (patient doesn't come off mouthpiece until all 3 events have been completed)

# **Patient Performance**

Lung Volume Acceptability Criteria

- Stable resting EELV (minimum of 3 breaths)
  No evidence of leaks or drift
- Panting Frequency should be ~ 1.0 br/sec
  30-60/min no higher than 90/min!
- Linear, appropriately sized loops
- 3-5 repeatable efforts
  - (FRC<sub>pleth</sub>range/mean <5%)</li>

# **Editing Lung Volumes**

- Delete (deactivate) unacceptable efforts
- Adjust lines representing EELV, if necessary
  - At least 3 breaths
  - Can ignore last breath if patient reacted to imminent shutter closing
- Adjust TLC and RV points
- Adjust slopes on TGV loops, if necessary
- Check FRC (and RV, TLC) variability

# Lung Volume Variability

•  $\geq$  3 acceptable FRCpleth within 5% of the mean

#### <u>(Largest FRC<sub>pleth</sub> – smallest FRC<sub>pleth</sub>) <0.05</u> mean FRC<sub>pleth</sub>

• Linked VCs show  $\leq$  0.15L variability

### **Evaluating Tidal Breathing**



Unstable Tidal Breathing

Stable Tidal Breathing

### **Resting Tidal Breathing?**



#### Resting tidal breathing? VC = 87% of predicted



## Why is tidal EELV sloping upward?



### Calibrate/Verify using 3 flows Consider low-flow range agreement



Consider that Inspiratory and Expiratory errors are cumulative and sum with each tidal breath.

Example: Low flow range expiratory error: -2% Low flow range inspiratory error: +2%

Each tidal breath will show 4% discrepancy in volume

\*inspiratory volume  $\geq$  4% larger than expiratory volume

# **Reviewing the Acceptable Trials**

- TGV measurements:
  - The TGV loop should always be linear.
  - The source of error in computerized line fitting is usually electronic noise.
  - The line-of-best-fit should lie along the longitudinal axis of the loop.

### **CLOSED SHUTTER**



**TGV = Delta Mouth Pressure / Delta Volume** 

## Review Repeatability and Switch-in Points



# **Reporting Lung Volumes**

- FRC<sub>pleth</sub> is mean of all acceptable efforts
  - $\leq$  5% variability, (highest lowest)/mean x 100
- ERV is mean of ERVs from acceptable linked\* vital capacity (ERV then TLC or IC to RV)
- VC is largest acceptable linked VC

\* Mean ERV should be close to largest ERV

# **Result Reporting**

- $RV = mean \ FRC_{pleth} mean \ ERV$
- TLC = RV + largest VC
- alternate TLC calculation:
  - FRC<sub>pleth</sub> and IC still linked but patient can't perform sustained exhalation
  - TLC = mean of 3 largest  $FRC_{pleth}$  + IC sums
  - RV = mean TLC minus largest VC

## **Data Review**

#### Lung Volumes:

- Perform 3 5 acceptable trials
- Variability of FRC<sub>pleth</sub> should be within 5% of the mean.
- Compare with other methods of volume determination when available

# **Data Review**

- Volume Acceptability:
  - Compare the VC volume with the FVC volume
  - Alternative Method:
    - IC to TLC after shutter opens
    - TLC = mean of 3 largest  $FRC_{pleth}$  + IC sums
    - Use the IC and ERV measurements from the largest acceptable VC maneuver to calculate derived values
  - Compare TLC from different methods
  - Compare VA from DLco and TLC from plethysmography
    - VA should <u>never</u> be higher

#### Performance Standard Test Quality Review Lung Volumes

- Was the pre-shutter EELV stable for 3-10 breaths?
  - Respiratory rate reasonable for patient?
  - EELV (FRC) correctly assigned?
- Was the shutter closed at the correct level?
  - Start of tidal inspiration (target: within 0.20L of FRC)
- Effort correct (> 5 cm H20 and < 20 cmH20)?</p>
- Was the TGV loop bidirectional (inspiratory and expiratory) and closed?
- Is assigned TGV slope correct?
- Parallel to TGV loop?
  - RV and TLC points correctly assigned?

#### Performance Standard Test Quality Review

Airway Resistance/Conductance

- > Was the volume small (i.e. 50-100ml)
- Was the Pant frequency ~ 1Hz (30-60/m) for TGV
- > Was the Pant frequency ~1.5 -2 Hz (90-120/m) for Raw?
- Is there minimal hysteresis in the open shutter loop?
- Is the Raw loop measured in the +0.5 to 0.5 L/sec range?
- Is the Raw slope parallel with the Raw loop?
- > Are there at least 3 acceptable trials?
- Has repeatability criteria been met?
- Is the TGV slope parallel with the TGV loop?

#### Performance Standard Test Quality Review

Variability and Repeatability

Is the FRC<sub>pleth</sub> variability less than 5%?
 Variability = (max – min) / mean x 100

- Is the variability of SVC within 0.15L of the largest SVC?
- Is the variability for sGaw <u>+</u>.01 of mean when below .17 or <u>+</u>.02 of mean when .18 or greater?

## **Airway Resistance**

# **Airway Resistance** Performance and Patient Management

# Patient Management Reassurance

- Reassure the patient continually to relieve anxiety associated with the test or sitting within the cabinet
- The test will take 3–4 minutes
- The door can be released at any time from the inside (manufacturer specific)

# Patient Management Explanation

#### Open-Door Phase

- Thoroughly explain the procedure
  - Open shutter-"like a small piston"
  - Closed shutter-"try panting with your hand over your mouth"
    - Brief, gentle efforts
  - Cheeks must be supported by hands
- Demonstrate the maneuver
- Practice with the patient
- Emphasize relaxing and breathing normally between measurements
- Closed-Door Phase
  - Practice while waiting for thermal stability

# Patient Management Explanation

- Patient performance criteria
  - Small breaths (~50-100ml)
  - Emphasize consistent, gentle efforts between 1.5 -2 efforts/sec (90 to 120)
  - Relax between efforts
  - Emphasize this is <u>NOT</u> an MVV or MIP/MEP
  - Provide continuous feedback on performance

# Patient Management Coaching

- Provide real-time feedback
- Practice maneuver prior to door closure
- Practice maneuver after door closure
- Evaluate and correct during testing

# **Open Shutter Panting Too Big**

#### Ends of Loops are Off Screen



#### Open Shutter Panting Still too Big Loop is also too wide



# Open Shutter Panting Too Small

Expiratory flow less than 0.5LPS



#### Airway Resistance and Conductance Correctly Performed



# **Data Review** Airway Mechanics: R<sub>aw</sub> loop

- The measurement is generally made a loop intersection with +0.5 and -0.5 L/sec horizontal markers
- When the loop appears aberrational in the +0.5 and -0.5 L/sec segment, measure through the larger linear portion of the loop.
- Most importantly, STANDARDIZE the method of measurement in your lab.

# **R**<sub>aw</sub> Acceptability Criteria

- Panting frequency should be ~ 90 -120 breaths/minute
- open-shutter loops are linear, non-elliptical and closed (or nearly so)
- intersection of loops with +0.5LPS and -0.5LPS used to construct slope
- Average of 4-5 acceptable trials
- sGaw variability is <u>+</u>.01 of mean when below .17 or <u>+</u>.02 of mean when .18 or greater

#### Airways Mechanics Open - Shutter Loop Morphology



"Fixed Extrathoracic Lesion"

# **Open-Shutter Loop Morphology**



# **Open-Shutter Loop Morphology**



# Airway Collapse Pattern



