### **Cardiac Medication Review**

**Stephen Robinson RN** 

# Who is this guy?

- Education: Bachelor of Science degrees in Criminal Justice, Psychology and Nursing. Finishing Master of Science in Finance in December
- Professional: 11 years as a nurse in Cardiac Telemetry, Cardiac ICU, Adult Cardiothoracic ICU, Trauma Surgical ICU, ECMO and Pediatric Cardiothoracic ICU

# Hemodynamic review: Cardiac Output

- Represents the amount of blood pumped by the heart in one minute
- \* Measured as SV X HR
- \* Measured in L/min with "normal range" of 4-8
- Cardiac Index: Adjust for patient size by dividing cardiac output by BSA. Normal Range is 2-4 L/min

### Hemodynamic Review: SVR

- Systemic Vascular resistance is a measure of afterload resistance
- \* Calculated as (MAP-CVP)/CO
- \* Normal range is 700-1500
- \* Indirectly effects stroke volume of the heart

### Fluid, Fluid and more Fluid

 The first line treatment of hypertension and hypotension is fluid management. Use of medications without treating hypo or hypervolemia will be ineffective and potentially dangerous.

# Assessing Fluid Needs

- \* SVR
- \* CVP
- \* Heart Rate
- \* Blood Pressure
- \* How does the patient look?

### What fluids to Use

- \* Colloids vs. Crystalloids
- \* Colloids: Blood Products and Albumin
- Colloids have higher tonicity allowing them to stay in the vasculature
- \* Crystalloids consist of fluids like D5W, NS or LR
- have lower tonicity causing more of the volume to "third space".
- \* Some controversy surrounding Albumin

## **Cell Receptor Review**

- Alpha 1 Receptor Cells- Work on smooth muscle. Causes vasoconstriction on the blood vessels supplying the skin, GI tract, kidneys and brain.
- \* Alpha 2 Receptor Cells- Undifferentiated smooth muscle relaxation
- Beta 1 Receptor Cells- Stimulation of Beta 1 receptor cells cause positive inotropy (cardiac output) and positive chronotropy ( heart rate ). Also stimulates the kidneys to secrete renin which activates the renin-angiotensin-aldosterone system causing systemic vasoconstriction to increase blood pressure.
- Beta 2 Receptor Cells- Smooth muscle relaxation more pronounced in bronchioles

### Antagonist and Agonist

- An Agonist agent stimulates the effect of the receptor cell. For example, and Beta agonist increases heart rate, cardiac output and blood pressure.
- An Antagonist agent inhibits the effect of the receptor cell. For example, a Beta antagonist decreases heart rate, cardiac output and blood pressure. AKA beta blocker.

### Catecholamines

- This group of medications are made up of drugs that are both Alpha 1 and Beta 1 agonists
- \* These medications have differing amounts of stimulation provided to each receptor cell. Some have more Alpha stimulation and others have more Beta stimulation.
- Medications that more strongly affect Alpha cells are often called pressors.
- Medications that more strongly affect Beta cells are often called inotropes.
- Most institutions require these medications to be given via central line.
- \* Use of these drugs is typically restricted to the ICU setting.

### **Catecholamine Chart**

| medscapes | www.medacape.com |    |               |        |  |
|-----------|------------------|----|---------------|--------|--|
|           |                  | Ac | tivity at Rec | eptors |  |
| Agent     | <i>a</i> 1       | a. | ß1            | f      |  |

www.medecane.com

eomos

| Agent          | α1     | α2   | βı   | β2   | Dopaminergic |
|----------------|--------|------|------|------|--------------|
| Dobutamine     | +      | +    | ++++ | ++   | 0            |
| Dopamine       | ++/+++ | ?    | ++++ | ++   | ++++         |
| Epinephrine    | ++++   | ++++ | ++++ | +++  | 0            |
| Norepinephrine | +++    | +++  | +++  | +/++ | 0            |
| Phenylephrine  | ++/+++ | +    | ?    | 0    | 0            |

 $\alpha$ ,  $\alpha$  adrenergic receptors;  $\beta$ ,  $\beta$  adrenergic receptors, DA, dopamine receptors. Activity ranges from no activity (0) to maximal activity (++++) or ? when activity is not known. Reproduced with permission from Rudis et al. Is it time to reposition vasopressors and ionotropes in sepsis? Crit Care Med 1996;24:525–537.

Source: Semin Respir Crit Care Med @ 2004 Thieme Medical Publishers

Medication to increase blood pressure: Phenylephrine (Neosynephrine)

- An alpha agonist causing blood pressure to rise through peripheral vasoconstriction
- Lacks Beta component so it has minimal effect on heart rate or contractility
- \* Normally used in patients with mild or early shock or hypotension cause by sedation
- Typically dosed from 20-200 mcg/min. Not typically weight based dosed. Titrated in 10-20 mcg/ min increments
- \* Due to lack of cardiac implications can be used as an IVP bolus to quickly raise blood pressure in the severely acute hypotension
- \* Safe to use through a peripheral IV site.

# Pressor Catecholamine-Norepinephrine (Levophed)

- \* Has moderate to strong Alpha and Beta stimulation.
- Increases blood pressure through peripheral vasoconstriction through alpha stimulation
- Provides some improvement of cardiac output but is mild due to higher SVR caused by vasoconstriction. Mild heart rate increases seen as well
- \* Most often seen with patient experience septic shock
- Dosing: Normally dosed by weight starting at .02 mcg/kg/min. Non weight based usually start at 2 mcg/min. Maximum doses by institution and unit.
- \* Titration usually starts in .02mcg/kg/min intervals based on patient effect.

# Mixed effect Catecholamines: Epinephrine

- \* Strong Alpha and Beta response.
- \* Increases heart rate, vasoconstriction and contractility.
- \* Used primarily in cardiac settings with severe cardiogenic shock.
- \* Typically a last line drug in adults due to increased myocardial oxygen consumption that results from its affects (heart is beating faster and stronger against more resistance)
- Not typically used in other shock syndromes due to stronger constriction of GI blood flow.
- \* Tends to be used less cautiously in pediatric patients who normally have healthier hearts that can tolerate the increased myocardial oxygen demand.
- Dosing: 0.01 mcg/kg/min to 0.2 mcg/kg/min or 2-10 mcg/min for non weight based dosing
- \* Also part of the ACLS algorithm for asystole, VT, Vfib and PEA. 1 mg for adults and 0.1 mg/kg for peds

# Mixed Effect Catecholamines: Dopamine

- \* A versatile drug that changes properties depending on dosing.
- \* 1-2 mcg/kg/min stimulates dopaminergic receptors causing vasodilation that increases renal and mesenteric blood flow. This dose is frequently referred to as renal dose dopamine
- \* 2-5 mcg/kg/min stimulates beta cells which causes increases in cardiac output and heart rate
- \* 5-10 mcg/kg/min stimulates alpha cells causing increases in blood pressure
- \* Dosing: 1-20 mcg/kg/min. Dosing dependent on goal effect of Dopamine
- \* Can cause profound tachycardia particularly at higher doses. Rarely see doses higher than 10 mcg/kg/min. Additional medications usually added at this point.

## Inotrope Catecholamine: Dobutamine

- \* Strong Beta cell agonist.
- Most pronounced effect is inotropic support. Can cause dysrhythmias and tachycardia due to strong Beta stimulation
- \* Most commonly used in CICU and cardiac stepdown floors for adults with CHF.
- \* Dosing: 2.5 -7.5 mcg/kg/min
- \* Titration usually occurs in 2.5 mcg/kg/min steps and is titrated to cardiac index.

#### Non Andrenergic Inotrope: Milrinone

- Milrinone is a phosphodiasterase inhibitor which inhibits the breakdown of cyclic AMP which ultimately causes calcium channels in the myocardium and arterial vasculature to allow more calcium to move in to intracellular level
- \* Increases myocardial contractility (inotrope)
- \* Causes vasodilation of arterial vasculature especially in the pulmonary artery which aids in right sided heart failure
- \* Used an IV drip mostly in ICU's for the treatment of CHF exacerbation.
- Blood pressure decrease is low to moderate as inotropic and vasodilation effect cancel one another
- \* Dosing: 0.125 mcg/kg/min to 0.75 mcg/kg/min

## Medications to increase blood pressure: Vasopressin

- Naturally occurring hormone secreted by the pituitary gland that helps regulate fluid status.
- \* Stimulates receptor cells in the kidneys causing an increase in systemic vasoconstriction.
- \* Early in the shock cycle Vasopressin secretion is increased. This supply is quickly depleted though. This is where the concept of physiologic dose Vasopressin comes from.
- \* Minimal effect on heart rate or cardiac output
- \* Should be used cautiously in patients with renal in sufficiency or failure.
- \* In adults it is generally dosed in units/ hr or units/min. Physiologic dosing is 2.4 units/hr (.04 units/min).
- \* Pediatric dosing: .0003-.001 units/kg/min
- Titration occurs in one unit/hr increments or .003 units/kg/min for pediatrics

# Drugs to treat hypertension/Cardiac Dysrhythmias

- Hypertension or cardiac dysrhythmias are usually treated with one and/or a combination of different drug classes
- \* Diuretics
- \* Vasodilators/Nitrates
- \* Calcium Channel Blockers
- \* ACE Inhibitors/ARBS
- \* Beta Blockers
- \* Anti-Arrhythmics

#### Diuretics

- Decrease hypertension by decreased circulating volume in the blood which decreases preload and afterload
- Decrease of preload is useful in treating patient with congestive heart failure and afterload reduction is useful in treating patients with HTN
- \* Multiple dosing strategies depending on type of diuretic, clinical setting and severity of fluid overload.

### Diuretics

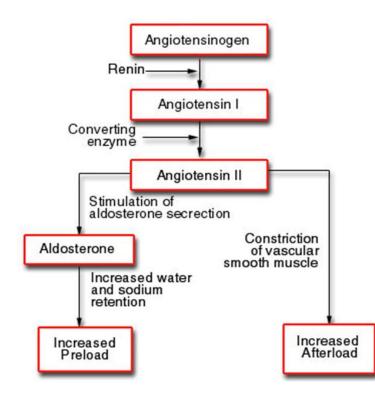
- \* Thiazides
  - \* First line drugs for the treatment of hypertension
  - \* Work by inhibiting sodium reabsorption in the distal renal tubules.
  - \* Chlorothiazide most commonly used in the acute care setting.
  - \* Commonly dosed as PO in step down setting and intermittent IVP in ICU settings
- \* Loop Diuretics
  - \* Inhibits sodium reabsorption in the Loop of Henle
  - \* Can be dosed as PO or IVP in step down settings or as continuous infusion in ICU setting.
  - Most commonly used Loop drugs are Furosemide (Lasix) and Bumetadine (Bumex)
- \* Most common and dangerous side effect for both versions is hypokalemia

### Vasodilators: Nipride

- \* Extremely potent and fast acting vasodilator. Causes vasodilation of arteries and veins but with stronger effect on arteries. Half life is 2 minutes.
- \* Nipride goes through a complex chain of interactions to produce NO, cyanide and methaemoglobin.
- Requires close monitoring of cyanide levels to avoid cyanide toxixcity. Newer mixes have an additive that binds to cyanide to protect against cyanide toxicity.
- \* Use is restricted to the ICU setting and is only used as a continuous drip
- \* Used most commonly in patients with HTN crisis situations and/or patients with aneurysms.
- \* Dosing 0.1 mcg/kg/min to 10 mcg/kg/min though higher doses are rare due to fear of cyanide toxicity.
- \* Titration is usually done in .1 mcg/kg/min increments.

# Nitroglycerin

- \* Vasodilator used mostly in the treatment of angina
- \* Centrally acting vasodilator that increases blood flow to the heart relieving angina symptoms. Most vasodilation occurs in the venous vasculature causing a decrease in cardiac work load.
- \* Most common setting for inpatient use is step down unit and CICU.
- \* Infrequently used as a treatment for hypertension
- \* Comes in a variety of forms: IV, Sublingual tablets, paste and oral tablet.
- Headache is a common side effect


## Clonidine

- \* Alpha 2 agonist that cause central venous and arterial vasodilation
- Tends to be used in chronic HTN rather than acute HTN
- PO only with dosing generally in the 0.1 to 0.3 mg range

# Anti-hypertensives: Calcium Channel Blockers

- \* Works by preventing calcium from passing through calcium channels in myocardial cells and arterial smooth muscle.
- Myocardial blockage leads to decreased heart rate and contractility
- \* Vascular blockage leads to vasodilation arterial vasculature (no effect on venous vasculature) to decrease afterload.
- \* Typically have a "pine" ending to generic name
- Used in variety of inpatient settings for treatment of HTN and atrial dysrhythmias and tachycardia.
- \* Commonly used drugs include Amlodipine, Nicardipine, Nifedipine, Diltiazem and Verapamil
- \* Can be administered PO, IVP or continuous IV infusion.

## Renin-Angiotensin-Aldosterone System



### **ACE Inhibitors**

- Prevent the conversion of angiotensin I into angiotensin II to help treat HTN
- Interruption of the Renin-Angiotension-Aldosterone system cause vasodilation, decreased cardiac output and decreased circulation volume
- \* Used in all inpatient settings as PO medication. Most common usage is for adult patient with CHF
- \* Most ACE inhibitors have "pril"
- \* Most commonly used are Captopril, Lisinopril, Enaloporil
- Can be used in a variety of clinical settings (ICU, step down, general care)
- \* Usage is avoided in patient with renal insufficiency
- \* Most common side effect is a dry hacking cough

# Angiotensin II receptor blockers (ARBs)

- \* Work very similarly to ACE inhibitors
- Mainly used in patients that cannot tolerate the effects of ACE inhibitors.
- \* Has all the same attributes as ACE inhibitors
- \* Most ARBs have "sartan" in their name

## Anti-hypertensives: Beta Blockers

- Beta receptor cell antagonist causing decreased cardiac contractility and slowing of the heart rate.
- Reduces amount Renin produced thereby indirectly decreasing afterload.
- \* Slowing of the heart rate and decreased afterload resistance neutralizes decreased contractility making Beta blockers safe for patients with CHF
- Seen in all phases of inpatient care as PO, intermittent IVP and Continuous IV drip
- \* Most beta blockers have "olol" ending to their pharmaceutical names
- \* Common Beta Blockers include Metoprolol, Carvedilol, Esmolol, Atenolol, Labetalol
- \* Important ICU application is the treatment of aortic aneurysms
- Contraindicated for the treatment hypertension caused by cocaine overdose.

### Amiodarone

- \* Anti-Arrhythmic useful in the treatment of atrial and ventricular arrhythmias
- Treats ventricular arrhythmias through decreased blockage of potassium channels
- Treats atrial arrhythmias through the blockage of calcium channels near the SA and AV nodes. Slows rate and can convert patient out of A-fib. Only used in acute cases of Afib
- Part of the ACLS algorithm for VT and V-Fib as a 150 mg IVP/ 5 mg/kg for pediatric patients
- \* Non emergent loading dose of 150 mg over 10 minutes
- \* 1 mg/minute drip rate x 6 hours followed by 0.5 mg/min x 18 hours and then transitioned to PO



- Increases contractility of the heart through the potentiation of calcium
- Decreases heart rate through stimulation of the vagal nerve. Makes it useful in treating A-fib
- Can be administered PO or IVP in step down and ICU settings
- \* Not used frequently due to difficulty in dosing.
- \* Requires semi regular blood draws.

